

Differential geometry

Differential geometry

Illustrating differential geometry

Illustrating differential geometry

Mathematical visualization

Mathematical visualization

Hyperbolic disk

Mathematical visualization

Local properties dictates global shapes

Local properties dictates global shapes

Shape from Metric

Differential property
e.g. Riemannian metric

Shape from Metric

Differential property

e.g. Riemannian metric

Surface

best displays the intrinsic geometry at the macroscopic level

Flat torus

Flat torus

C^{1} embedding
flat torus

Flat torus

C^{1} embedding

Flat torus

Flat torus

Flat torus

[H. Segerman 2015 Shapeways] [R. Ferréol 2008 mathcurve.com]

Piecewise smooth embedding

Piecewise smooth embedding

Piecewise smooth embedding

Microscopic scale
Isometry problem in Euclidean plane.

Macroscopic scale
Gauge field theory. Variational problem.

Microscopic level

Global level — rotation field

Global level — rotation field

Global level — rotation field

Gauge theory

Gauge theory

Rotational connection $r_{i j}$

Gauge theory

Rotational connection

Gauge theory

Rotational connection

Gauge theory

Gauge theory

$\left|Q_{j}-Q_{i} \circ r_{i j}\right|$
connection derivative

Gauge theory

$Q_{j}-Q_{i} \circ r_{i j}$ contains 3 modes

Gauge theory

$Q_{j}-Q_{i} \circ r_{i j}$ contains 3 modes

Gauge theory

$Q_{j}-Q_{i} \circ r_{i j}$ contains 3 modes

Gauge theory

$Q_{j}-Q_{i} \circ r_{i j}$ contains 3 modes

Gauge theory

$$
Q_{j}-Q_{i} \circ r_{i j}
$$

Gauge theory

$$
Q_{j}-Q_{i} \circ r_{i j}=
$$

Gauge theory

bending

$$
Q_{j}-Q_{i} \circ r_{i j}=
$$

Gauge theory

Anisotropic norm

$$
\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}=\epsilon_{1}| |_{\text {fidelity }}^{2}+\left|\epsilon_{2}\right|
$$

Energy functional

Dirichlet energy

$$
\sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

Energy functional

Dirichlet energy

$$
\sum_{\text {all edges }} \mid Q_{j}-Q_{i} \circ{r_{i j} \mid}_{\epsilon}^{2}
$$

Energy functional

Ginzburg-Landau energy

fermions

Energy functional

Ginzburg—Landau energy

$$
\sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\substack{\text { anisotropic norm }}}^{2}
$$

Emergent surface

Microscopic scale
Setting up gauge field $r_{i j}$

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

The bunny metric

The round torus metric

target metric

The round torus metric

Immersion

Locally Embedded Surfaces

Immersion

Immersion

Pinch points

Pinch point

Pinch point

Pinch points

Steiner surface

Pinch points

Pinch points

subdivision surface

NURBS surface

Pinch points

Emergent surface

Microscopic scale
Setting up gauge field $r_{i j}$

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

Invisible to pinch points

Emergent surface

Microscopic scale

Setting up gauge field $r_{i j}$

Macroscopic scale

Can we ensure immersion for such emergent isometric surfaces?
minimize $\sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}$
Invisible to pinch points

Emergent surface

Microscopic scale

Setting up gauge field $r_{i j}$

Macroscopic scale
minimize $\sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}$
Invisible to pinch points

Can we ensure immersion for such emergent isometric surfaces?

YES

Descriptions of rotations

Rotation matrices $\mathrm{SO}(3)$
$Q \in \mathbb{R}^{3 \times 3}, \quad Q^{\top} Q=I, \quad \operatorname{det}(Q)=1$
3D rotation $\mathbf{V} \mapsto \mathbf{Q v}$
Unit quaternions $\mathrm{SU}(2)$
$q=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{H}, \quad|q|=1$
3D rotation $\mathbf{v} \mapsto q \mathbf{v} \bar{q}$

Descriptions of rotations

Rotation matrices $\mathrm{SO}(3)$

$$
Q \in \mathbb{R}^{3 \times 3}, \quad Q^{\top} Q=I, \quad \operatorname{det}(Q)=1
$$

3D rotation $\mathbf{V} \mapsto Q \mathbf{V}$
Unit quaternions $\mathrm{SU}(2)$

$$
q=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{H}, \quad|q|=1
$$

3D rotation $\mathbf{V} \mapsto q \mathbf{v} \bar{q}$ square root of the rotation
$q,-q$ represent the same rotation

SO(3)

rotation matrices

Descriptions of rotations

Descriptions of rotations

SU(2) unit quaternions "spinors"

SO(3)
rotation matrices
"rotations"

Descriptions of rotations

rotation matrices
"rotations"
unit quaternions
"spinors"

Descriptions of rotations

target metric

rotation matrices
unit quaternions
"rotations"

Descriptions of rotations

rotation matrices
"rotations"

Descriptions of rotations

rotation matrices
"rotations"

unit quaternions
"spinors"

Descriptions of rotations

rotation matrices
"rotations"

unit quaternions
"spinors"

Descriptions of rotations

rotation matrices
"rotations"

unit quaternions
"spinors"

Spinorial gauge theory

Iteration: 30

$$
50
$$

Spinorial gauge theory

Emergent surface

Can we ensure immersion for such emergent isometric surfaces?

YES

Emergent surface

Can we ensure immersion for such emergent isometric surfaces?

YES

How? And why do spinors work?

Immersion Theory of Surfaces

Topologist's mug

Topologist's mug

Topologist's mug

Topologist's mug

Topologist's mug

Topologist's mug

Topologist's mug

Regular homotopy class

Regular homotopy classes

Closed strips

Immersion?
Regular homotopy class?

Closed strips

closed strip

Closed strips

Closed strips

Theorem (Closed strips)

There are 2 regular homotopy classes for oriented closed strips.

Closed strips

Theorem (Closed strips)
There are 2 regular homotopy classes for oriented closed strips.

Closed strips

Theorem (Closed strips)
There are 2 regular homotopy classes for oriented closed strips.

Figure-0

Figure-8

Closed strips

Immersibility of disks

Theorem (Immersibility of Disks)

A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Figure-0

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure=n

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Immersibility of disks

Theorem (Immersibility of Disks)
A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Figure-8

pinch point

Figure-0

Immersion condition

Definition

A vertex is said to be almost immersed if its one-ring triangle strip is a Figure-0.

Immersion condition

Definition

A vertex is said to be almost immersed if its one-ring triangle strip is a Figure-0.

Immersion condition

Definition

A vertex is said to be almost immersed if its one-ring triangle strip is a Figure-0.

Definition

A simplicial surface is almost immersed if all vertices are almost immersed. That is, all contractable strips are Figure-0.

Global strips

Global strips

Global strips

Theorem (Regular homotopy)

Two immersions are regular homotopic if and only if their global strips share the same Figure-8/0 type.

Global strips

Original question

Can we construct surfaces that are guaranteed to be immersions?

Original question

Can we construct surfaces that are guaranteed to be immersions?

Can we "control" the Figure-8/0 type of all strips?

Original question

Can we "control" the Figure-8/0 type of all strips?

- Algebraic description of the strip types.
- "Rims" measure deviation from the desired strip configuration.
- Encode the above algebraic objective in the gauge field for the spinors.

The space of closed strips

The space of closed strips

The space of closed strips \{closed strips $\}$
is a vector space over \mathbb{Z}_{2}.

The space of closed strips

The space of closed strips \{closed strips $\}$
is a vector space over \mathbb{Z}_{2}.

The space of closed strips

The space of closed strips \{closed strips $\}$
is a vector space over \mathbb{Z}_{2}.

The space of closed strips

The space of closed strips \{closed strips $\}$
is a vector space over \mathbb{Z}_{2}.

Figure-8/0 function

Figure-8/0 function

$$
f: M \rightarrow \mathbb{R}^{3}
$$

$$
\mathfrak{q}_{f}:\{\text { closed strips }\} \rightarrow \mathbb{Z}_{2}
$$

$$
\mathfrak{q}_{f}(\gamma)= \begin{cases}0 & \text { if } \gamma \text { is realized as a Figure-0 } \\ 1 & \text { if } \gamma \text { is realized as a Figure-8 }\end{cases}
$$

Figure-8/0 function
$\mathfrak{q}_{f}\left(\gamma_{1}\right)=0$

Figure-8/0 function

Figure-8/0 function

Figure-8/0 function

$$
\begin{aligned}
\mathfrak{q}_{f}\left(\gamma_{1}\right) & =0 \\
\mathfrak{q}_{f}\left(\gamma_{2}\right) & =0 \\
{\left[\gamma_{1} \cap \gamma_{2}\right] } & =1
\end{aligned}
$$

Figure-8/0 function

$$
\begin{aligned}
\mathfrak{q}_{f}\left(\gamma_{1}\right) & =0 \\
\mathfrak{q}_{f}\left(\gamma_{2}\right) & =0 \\
{\left[\gamma_{1} \cap \gamma_{2}\right] } & =1 \\
\mathfrak{q}_{f}\left(\gamma_{1}+\gamma_{2}\right) & =1
\end{aligned}
$$

Figure-8/0 function

$$
\mathfrak{q}_{f}\left(\gamma_{1}+\gamma_{2}\right)=\mathfrak{q}_{f}\left(\gamma_{1}\right)+\mathfrak{q}_{f}\left(\gamma_{2}\right)+\left[\gamma_{1} \cap \gamma_{2}\right]
$$

$$
\begin{aligned}
\mathfrak{q}_{f}\left(\gamma_{1}\right) & =0 \\
\mathfrak{q}_{f}\left(\gamma_{2}\right) & =0 \\
{\left[\gamma_{1} \cap \gamma_{2}\right] } & =1 \\
\mathfrak{q}_{f}\left(\gamma_{1}+\gamma_{2}\right) & =1
\end{aligned}
$$

Quadratic forms

$$
\mathfrak{q}_{f}\left(\gamma_{1}+\gamma_{2}\right)=\mathfrak{q}_{f}\left(\gamma_{1}\right)+\mathfrak{q}_{f}\left(\gamma_{2}\right)+\left[\gamma_{1} \cap \gamma_{2}\right]
$$

\mathfrak{q}_{f} is a quadratic form associated with the scalar product $[\cdot \cap \cdot]$ on the \mathbb{Z}_{2} vector space $\{$ closed strips $\}$.

There are many quadratic forms associated with the same scalar product when the space is over a finite field of characteristic 2.

Quadratic forms

Suppose \mathfrak{q}, $\tilde{\mathfrak{q}}$ are two quadratic forms associated with $[\cdot \cap \cdot]$,

$$
\begin{aligned}
& \mathfrak{q}\left(\gamma_{1}+\gamma_{2}\right)=\mathfrak{q}\left(\gamma_{1}\right)+\mathfrak{q}\left(\gamma_{2}\right)+\left[\gamma_{1} \cap \gamma_{2}\right] \\
& \tilde{\mathfrak{q}}\left(\gamma_{1}+\gamma_{2}\right)=\tilde{\mathfrak{q}}\left(\gamma_{1}\right)+\tilde{\mathfrak{q}}\left(\gamma_{2}\right)+\left[\gamma_{1} \cap \gamma_{2}\right]
\end{aligned}
$$

Quadratic forms

Suppose $\mathfrak{q}, \tilde{\mathfrak{q}}$ are two quadratic forms associated with $[\cdot \cap \cdot]$,

$$
\begin{aligned}
\mathfrak{q}\left(\gamma_{1}+\gamma_{2}\right) & =\mathfrak{q}\left(\gamma_{1}\right)+\mathfrak{q}\left(\gamma_{2}\right)+\left[\gamma_{1} \cap \gamma_{2}\right] \\
-) \quad \tilde{\mathfrak{q}}\left(\gamma_{1}+\gamma_{2}\right) & =\tilde{\mathfrak{q}}\left(\gamma_{1}\right)+\tilde{\mathfrak{q}}\left(\gamma_{2}\right)+\left[\gamma_{1} \cap \gamma_{2}\right]
\end{aligned}
$$

$$
(\mathfrak{q}-\tilde{\mathfrak{q}})\left(\gamma_{1}+\gamma_{2}\right)=(\mathfrak{q}-\tilde{\mathfrak{q}})\left(\gamma_{1}\right)+(\mathfrak{q}-\tilde{\mathfrak{q}})\left(\gamma_{2}\right)
$$

The difference of two such quadratic forms is a linear functional.

Quadratic forms

The difference of two such quadratic forms is a linear functional.

The collection of these quadratic forms is an affine space parallel to $\{\text { closed strips }\}^{*}$.

The geometric representations of elements in \{closed strips \} are rims.

Rims

Rims

Rims

Rims

Rimmed surface

A rimmed surface (f, \mathfrak{s}) consists of

- a surface realization $f: M \rightarrow \mathbb{R}^{3}$
- $\operatorname{rims} \mathfrak{s} \in C_{1}\left(M, \partial M ; \mathbb{Z}_{2}\right) \simeq C_{1}\left(M^{*} ; \mathbb{Z}_{2}\right)$

The Figure-8/0 function for a rimmed surface (f, \mathfrak{s}) is given by

$$
\mathfrak{q}_{(f, \mathfrak{s})}=\mathfrak{q}_{f}+\mathfrak{s}
$$

Rimmed surface

- The Figure-8/0 type of strips is described algebraically by a quadratic form \mathfrak{q}.
- With a prescribed \mathfrak{q}, any surface realization

$$
f: M \rightarrow \mathbb{R}^{3}
$$

shall be decorated with rims $\mathfrak{s} \in \mathfrak{q}-\mathfrak{q}_{f}$.

Emergent surface

Microscopic scale
Setting up gauge field $r_{i j}$

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

Emergent surface

Microscopic scale
Setting up gauge field $r_{i j}$ and a quadratic form \mathfrak{q}

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

Emergent surface

Microscopic scale

Setting up gauge field $r_{i j}$ and a quadratic form \mathfrak{q}

Macroscopic scale
minimize

$$
\sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

$\operatorname{minimize}|\mathfrak{s}|=\left|\mathfrak{q}_{f}-\mathfrak{q}\right|$

Lifting rotations to spinors

Rotational gauge field $r_{i j}$

Lifting rotations to spinors

$$
Q_{j} \in \operatorname{SO}(3)
$$

Lifting rotations to spinors

Lifting rotations to spinors

Lifting rotations to spinors

Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$

Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M
$$

Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M
$$

Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M
$$

$$
\prod_{\hat{\gamma}} r_{i j}=\exp \left(2 \pi \mathbf{i}-\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}\right)
$$

Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M
$$

$$
\prod_{\hat{\gamma}}{r_{i j}}=\exp \left(2 \pi \mathbf{i}-\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}\right)
$$

Spin Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\begin{gathered}
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M \\
\prod_{\hat{\gamma}} \tau_{i j}=\exp \left(2 \pi \mathbf{i}-\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}\right)
\end{gathered}
$$

Spin Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\begin{gathered}
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M \\
\prod_{\hat{\gamma}} \tau_{i j}=\exp \left(\pi \mathbf{i}-\frac{\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}}{2}\right)
\end{gathered}
$$

Spin Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\begin{gathered}
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M \\
\prod_{\hat{\gamma}} \tau_{i j}= \pm \exp \left(\pi \mathbf{i}-\frac{\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}}{2}\right)
\end{gathered}
$$

Spin Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M
$$

$$
\prod_{\hat{\gamma}} \tau_{i j}=(-1)^{\boldsymbol{q}^{(}(r)} \exp \left(\pi \mathbf{i}-\frac{\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}}{2}\right)
$$

Spin Gauss-Bonnet Theorem

Given $\gamma \in\{$ closed strips $\}$
Represent it as a path

$$
\hat{\gamma}: \mathbb{S}^{1} \rightarrow M
$$

$$
\prod_{\hat{\gamma}} \tau_{i j}=(-1)^{\mathfrak{q}_{\tau}(\gamma)} \exp \left(\pi \mathbf{i}-\frac{\mathbf{i} \int_{\hat{\gamma}} \kappa_{g}}{2}\right)
$$

$$
\mathfrak{q}_{\tau}:\{\text { closed strips }\} \rightarrow \mathbb{Z}_{2}
$$

Spin Structure

Theorem
$\mathfrak{q}_{\tau}:\{$ closed strips $\} \rightarrow \mathbb{Z}_{2}$ is a quadratic form associated with $[\cdot \cap \cdot]$.

Spin Structure

Theorem

$\mathfrak{q}_{\tau}:\{$ closed strips $\} \rightarrow \mathbb{Z}_{2}$ is a quadratic form associated with $[\cdot \cap \cdot]$.
$C_{1}\left(M, \partial M ; \mathbb{Z}_{2}\right)$ acts (by switching the signs of τ) transitively on the space of such quadratic forms.

Spin Structure

$C_{1}\left(M, \partial M ; \mathbb{Z}_{2}\right)$ acts (by switching the signs of τ) transitively on the space of such quadratic forms.

Given M with a desired metric and Figure-8/0 configuration \mathfrak{q}
Rotational connection $r_{i j}$

$$
\text { Spin connection } \tau_{i j}= \pm_{i j} \sqrt{r_{i j}} \text { so that } \mathfrak{q}_{\tau}=\mathfrak{q}
$$

Emergent surface

Microscopic scale

Setting up gauge field $r_{i j}$ and a quadratic form \mathfrak{q}

Macroscopic scale
minimize

$$
\sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}
$$

minimize $|\mathfrak{s}|=\left|\mathfrak{q}_{f}-\mathfrak{q}\right|$

Emergent surface

Microscopic scale

Spin connection $\tau_{i j}$

Macroscopic scale
$\operatorname{minimize} \sum_{\text {all edges }}\left|Q_{j}-Q_{i} \circ r_{i j}\right|_{\epsilon}^{2}$
minimize $|\mathfrak{s}|=\left|\mathfrak{q}_{f}-\mathfrak{q}\right|$

Rim Representation

$\lambda_{i} \quad \lambda_{j} \in \operatorname{SU}(2)$

We can use the spin connection $\tau_{i j}$ to measure whether λ_{i}, λ_{j} have consistent chosen signs.

Theorem [C., Knöppel, Pinkall, Schröder 2018]
Let $f: M \rightarrow \mathbb{R}^{3}$ be a non-degenerate triangular surface,
$Q_{i} \in \mathrm{SO}(3)$ be the rotation part of $(d f)_{i}$ (polar decomposition),
$\lambda_{i} \in \mathrm{SU}(2)$ be any unit quaternion that "squares" to Q_{i}.

Rim Representation

Theorem [C., Knöppel, Pinkall, Schröder 2018]
Let $f: M \rightarrow \mathbb{R}^{3}$ be a non-degenerate triangular surface,
$Q_{i} \in \mathrm{SO}(3)$ be the rotation part of $(d f)_{i}$ (polar decomposition),
$\lambda_{i} \in \mathrm{SU}(2)$ be any unit quaternion that "squares" to Q_{i}.
Across neighboring triangles, measure the signature

$$
(-1)^{\mathfrak{s}_{i j}}:=\operatorname{sgn}\left\langle\lambda_{j}, \lambda_{i} \circ \tau_{i j}\right\rangle_{\mathbb{R}^{4}}
$$

Rim Representation

Theorem [C., Knöppel, Pinkall, Schröder 2018]
Let $f: M \rightarrow \mathbb{R}^{3}$ be a non-degenerate triangular surface,
$Q_{i} \in \mathrm{SO}(3)$ be the rotation part of $(d f)_{i}$ (polar decomposition),
$\lambda_{i} \in \mathrm{SU}(2)$ be any unit quaternion that "squares" to Q_{i}.
Across neighboring triangles, measure the signature

$$
(-1)^{\mathfrak{s}_{i j}}:=\operatorname{sgn}\left\langle\lambda_{j}, \lambda_{i} \circ \tau_{i j}\right\rangle_{\mathbb{R}^{4}}
$$

Then the rimmed surface (f, \mathfrak{s}) has the desired figure-8/0 property

$$
\mathfrak{q}_{\tau}=\mathfrak{q}_{(f, \mathfrak{s})}
$$

$$
\begin{aligned}
& (-1)^{\mathfrak{s}_{i j}}:=\operatorname{sgn}\left\langle\lambda_{j}, \lambda_{i} \circ \tau_{i j}\right\rangle_{\mathbb{R}^{4}} \\
& |\mathfrak{s}| \leq \frac{1}{2} \sum_{\text {all edges }}\left|\lambda_{j}-\lambda_{i} \circ \tau_{i j}\right|^{2}
\end{aligned}
$$

Emergent surface

Microscopic scale
Spin connection $\tau_{i j}$

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|\lambda_{j}-\lambda_{i} \circ \tau_{i j}\right|_{\epsilon}^{2}
$$

Emergent surface

Microscopic scale

Spin connection $\tau_{i j}$| gauge field encodes |
| :--- |
| : metric |
| figure-8/0 |

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }} \left\lvert\, \begin{gathered}
\left|\lambda_{j}-\lambda_{i} \circ \tau_{i j}\right|_{\epsilon}^{2} \\
\text { spinor field encodes } \\
\text { • rotation field (frames) } \\
\text { rims }
\end{gathered}\right.
$$

Emergent surface

Microscopic scale
Spin connection $\tau_{i j}$

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|\lambda_{j}-\lambda_{i} \circ \tau_{i j}\right|_{\epsilon}^{2}
$$

Emergent surface

Microscopic scale
Spin connection $\tau_{i j}$

Macroscopic scale

$$
\operatorname{minimize} \sum_{\text {all edges }}\left|\lambda_{j}-\lambda_{i} \circ \tau_{i j}\right|_{\epsilon}^{2}
$$

Pinch point resolved

A Disk in Hyperbolic Plane

Hyperbolic disk

A Disk in Hyperbolic Plane

Hyperbolic disk

A Disk in Hyperbolic Plane

Circle Limit III

- M.C. Escher

A Disk in Hyperbolic Plane

Flat Tori

Metric modified by Ricci flow

Constant negative curvature surface

Random initial spinors

Constant negative gaussian curvature

Piecewise-smooth isometric immersions

Conjecture

Each regular homotopy class of immersions of a 2D Riemannian manifold into \mathbb{R}^{3} contains a piecewise smooth isometric representative.

Soccer ball

Soccer ball

Soccer ball

Aluminium can

Aluminium can

Turning the sphere inside out

A. Phillips 1966

Film:Turning a Sphere Inside Out
N. Max 1977

B. Morin, G. Francis 1967/1987

Film: Outside In
W. Thurston,
S. Levy,
D. Maxwell,
T. Munzner 1994

Optiverse
J. Sullivan,
G. Francis,
S. Levy 1996
A. Chéritat 2014

Turn the bunny inside out isometrically

Thank You

- YouTube Shape from Metric
- (o) Houdini implementations

Albert Chern TU Berlin / UCSD
Felix Knöppel TU Berlin
Franz Pedit
UMass Amherst
Ulrich Pinkall
TU Berlin
Peter Schröder Caltech
"Shape from Metric"
ACM Trans. Graph. SIGGRAPH 2018
"Finding Conformal and Isometric Immersions of Surfaces"
arXiv: 1901.09432

