Shape from Metric

Albert Chern TU Berlin / UC SanDiego

Shape from Metric

Albert Chern TU Berlin / UC SanDiego

>0

eometry and Sep

5

strating

IIIu

 \geq

C

ш

0

Felix Knöppel **TU Berlin** Ulrich Pinkall TU Berlin

Franz Pedit UMass Amherst Peter Schröder Caltech

Differential geometry

Differential geometry

Illustrating differential geometry

Illustrating differential geometry

Mathematical visualization

Mathematical visualization

Hyperbolic disk

Mathematical visualization

Local properties dictates global shapes

Local properties dictates global shapes

Shape from Metric

Differential property e.g. Riemannian metric

Shape from Metric

Differential property e.g. Riemannian metric

Surface

best displays the intrinsic geometry at the macroscopic level

[Borrelli, Jabrane, Lazarus, Rohmer & Thibert 2012]

Piecewise smooth C⁰ embedding

[H. Segerman 2015 *Shapeways*][R. Ferréol 2008 <u>mathcurve.com</u>]

Piecewise smooth embedding

Piecewise smooth embedding

Piecewise smooth embedding

Microscopic scale Isometry problem in Euclidean plane.

Macroscopic scale

Gauge field theory. Variational problem.

Microscopic level

Microscopic level

Global level — rotation field

Global level — rotation field

Global level — rotation field

Rotational connection r_{ij} Levi-Civita connection

Rotational connection r_{ij} Levi-Civita connection

Rotational connection r_{ij} Levi-Civita connection

.1

 $Q_i \circ r_{ij}$

connection derivative

$Q_j - Q_i \circ r_{ij}$ contains 3 modes

$Q_j - Q_i \circ r_{ij}$ contains 3 modes

$Q_j - Q_i \circ r_{ij}$ contains 3 modes

$Q_j - Q_i \circ r_{ij}$ contains 3 modes

 $Q_j - Q_i \circ r_{ij}$

$Q_j - Q_i \circ r_{ij} =$

$Q_j - Q_i \circ r_{ij} =$

Anisotropic norm $|Q_j - Q_i \circ r_{ij}|_{\epsilon}^2 = \epsilon_1$ fidelity

Dirichlet energy $\sum \left| Q_{j} - Q_{i} \circ r_{ij} \right|_{\epsilon}^{2}$

Dirichlet energy $\sum_{\text{II edges}} |Q_j - Q_i \circ [r_{ij}]_{\epsilon}^2$ all edges

Ginzburg-Landau energy

Ginzburg-Landau energy $\sum |Q|$ all edges

$$Q_j - Q_i \circ r_{ij} \Big|_{\epsilon}^2$$

anisotropic nor

m

Microscopic scale Setting up gauge field r_{ij}

Macroscopic scale

minimize $\sum_{i=1}^{\infty} |Q_j - Q_i \circ r_{ij}|_{\epsilon}^2$ all edges

The bunny metric

•

target metric

The bunny metric

The round torus metric

target metric

The round torus metric

Locally Embedded Surfaces

smoothing

Pinch point

Steiner surface

cross cap

subdivision surface

NURBS surface

Microscopic scale Setting up gauge field r_{ij}

Macroscopic scale

Microscopic scale Setting up gauge field r_{ii}

Macroscopic scale

Invisible to pinch points

Can we ensure immersion for such emergent isometric surfaces?

Microscopic scale Setting up gauge field r_{ii}

Macroscopic scale

Invisible to pinch points

Can we ensure immersion for such emergent isometric surfaces?

Rotation matrices SO(3) $Q \in \mathbb{R}^{3 \times 3}, \quad Q^{\mathsf{T}}Q = I, \quad \det(Q) = 1$ 3D rotation $\mathbf{v} \mapsto Q\mathbf{v}$

Unit quaternions SU(2)

 $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H}, \quad |q| = 1$

3D rotation $\mathbf{V} \mapsto q\mathbf{V}q$

Rotation matrices SO(3) $Q \in \mathbb{R}^{3 \times 3}$, $Q^{\mathsf{T}}Q = I$, $\det(Q) = 1$ 3D rotation $\mathbf{v} \mapsto Q\mathbf{v}$

Unit quaternions SU(2)

$q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H}, \quad |q| = 1$ 3D rotation $\mathbf{v} \mapsto q \mathbf{v} \overline{q}$ square root of the rotation

q, -q represent the same rotation

SU(2) unit quaternions

SO(3) rotation matrices

SU(2) unit quaternions

SO(3) rotation matrices

SU(2) unit quaternions

SO(3) rotation matrices

SU(2) unit quaternions *"spinors"*

SO(3) rotation matrices *"rotations"*

rotation matrices "rotations"

unit quaternions "spinors"

rotation matrices "rotations"

target metric

unit quaternions "spinors"

rotation matrices *"rotations"*

rotation matrices *"rotations"*

rotation matrices *"rotations"*

rotation matrices *"rotations"*

Spinorial gauge theory

Iteration: 30

Spinorial gauge theory

Spinorial gauge theory

Emergent surface

surfaces?

Can we ensure immersion for such emergent isometric

Emergent surface

surfaces?

How? And why do spinors work?

Can we ensure immersion for such emergent isometric

YES

Immersion

Immersion Theory of Surfaces

stay immersed

homotopy

homotopy

Regular homotopy class

Immersion?

Regular homotopy class?

closed strip

Theorem (Closed strips) There are 2 regular homotopy

There are 2 regular homotopy classes for oriented closed strips.

Theorem (Closed strips) *There are 2 regular homotopy classes for oriented closed strips.*

Theorem (Closed strips) *There are 2 regular homotopy classes for oriented closed strips.*

Figure-0

Figure-8

Theorem (Immersibility of Disks) A disk can be perturbed into an immersion if and only if its boundary strip is a Figure-0.

Theorem (Immersibility of Disks)

Definition

is a Figure-0.

A vertex is said to be almost immersed if its one-ring triangle strip

Definition

is a Figure-0.

A vertex is said to be almost immersed if its one-ring triangle strip

Definition

is a Figure-0.

Definition

immersed. That is, all contractable strips are Figure-0.

A vertex is said to be almost immersed if its one-ring triangle strip

A simplicial surface is almost immersed if all vertices are almost

Theorem (Regular homotopy) *Two immersions are regular homotopic if and only if their global strips share the same Figure-8/0 type.*

Original question

Can we construct surfaces that are guaranteed to be immersions?

Original question

Can we construct surfaces that are guaranteed to be **immersions**?

Can we "control of all strips?

Can we "control" the Figure-8/0 type

Original question

Can we "control" the Figure-8/0 type of all strips?

- Algebraic description of the strip types.
- "*Rims*" measure deviation from the desired strip configuration.
- Encode the above algebraic objective in the *gauge field* for the *spinors*.

M

$$: M \to \mathbb{R}^3$$

$q_f: \{\text{closed strips}\} \rightarrow \mathbb{Z}_2$ $q_f(\gamma) = \begin{cases} 0 & \text{if } \gamma \text{ is realized as a Figure-0} \\ 1 & \text{if } \gamma \text{ is realized as a Figure-8} \end{cases}$

 $f: M \to \mathbb{R}^3$

$\mathfrak{q}_f(\gamma_1) = 0$

$q_f(\gamma_1) = 0$ $q_f(\gamma_2) = 0$

$q_f(\gamma_1) = 0$ $q_f(\gamma_2) = 0$ $[\gamma_1 \cap \gamma_2] = 1$

$q_f(\gamma_1) = 0$ $q_f(\gamma_2) = 0$ $[\gamma_1 \cap \gamma_2] = 1$

 $q_f(\gamma_1) = 0$ $q_f(\gamma_2) = 0$ $[\gamma_1 \cap \gamma_2] = 1$ $q_f(\gamma_1 + \gamma_2) = 1$

$\mathfrak{q}_f(\gamma_1 + \gamma_2) = \mathfrak{q}_f(\gamma_1) + \mathfrak{q}_f(\gamma_2) + [\gamma_1 \cap \gamma_2]$

$\mathfrak{q}_f(\gamma_1 + \gamma_2) = \mathfrak{q}_f(\gamma_1) + \mathfrak{q}_f(\gamma_2) + [\gamma_1 \cap \gamma_2]$

on the \mathbb{Z}_2 vector space {closed strips}.

- \mathfrak{q}_f is a quadratic form associated with the scalar product $[\cdot \cap \cdot]$
- There are many quadratic forms associated with the same scalar product when the space is over a finite field of characteristic 2.

- - $\mathfrak{q}(\gamma_1 + \gamma_2) = \mathfrak{q}(\gamma_1) + \mathfrak{q}(\gamma_2) + [\gamma_1 \cap \gamma_2]$ $\tilde{\mathfrak{q}}(\gamma_1 + \gamma_2) = \tilde{\mathfrak{q}}(\gamma_1) + \tilde{\mathfrak{q}}(\gamma_2) + [\gamma_1 \cap \gamma_2]$

Suppose q, \tilde{q} are two quadratic forms associated with $\lceil \cdot \cap \cdot \rceil$,

- Suppose q, \tilde{q} are two quadratic forms associated with $\lceil \cdot \cap \cdot \rceil$, $\mathfrak{q}(\gamma_1 + \gamma_2) = \mathfrak{q}(\gamma_1) + \mathfrak{q}(\gamma_2) + [\gamma_1 \cap \gamma_2]$ $-) \quad \tilde{\mathfrak{q}}(\gamma_1 + \gamma_2) = \tilde{\mathfrak{q}}(\gamma_1) + \tilde{\mathfrak{q}}(\gamma_2) + [\gamma_1 \cap \gamma_2]$
 - $(\mathfrak{q} \tilde{\mathfrak{q}})(\gamma_1 + \gamma_2) = (\mathfrak{q} \tilde{\mathfrak{q}})(\gamma_1) + (\mathfrak{q} \tilde{\mathfrak{q}})(\gamma_2)$

The difference of two such quadratic forms is a linear functional.

The collection of these quadratic forms is an *affine space* parallel to {closed strips}*.

are rims.

The difference of two such quadratic forms is a linear functional.

The geometric representations of elements in {closed strips}*

Rimmed surface

A rimmed surface (f, \mathfrak{s}) consists of

• a surface realization $f: M \to \mathbb{R}^3$ • rims $\mathfrak{s} \in C_1(M, \partial M; \mathbb{Z}_2) \cong C_1(M^*; \mathbb{Z}_2)^*$

- The Figure-8/0 function for a rimmed surface (f, \mathfrak{s}) is given by
 - $q_{(f,\mathfrak{s})} = q_f + \mathfrak{s}$

Rimmed surface

- The Figure-8/0 type of strips is described algebraically by a quadratic form q.
- With a prescribed q, any surface realization $f: M \to \mathbb{R}^3$
 - shall be decorated with rims $\mathfrak{s} \in \mathfrak{q} \mathfrak{q}_f$.

Microscopic scale Setting up gauge field r_{ij}

minimize $\sum_{i=1}^{n} |Q_{j} - Q_{i} \circ r_{ij}|_{\epsilon}^{2}$ all edges

Microscopic scale

Setting up gauge field r_{ij} and a quadratic form q

Microscopic scale

Setting up gauge field r_{ij} and a quadratic form q

i

Rotational gauge field r_{ij}

 \sim

i

$\tau_{ij} := \pm.$ Spin connection

The sign encodes q

Given $\gamma \in \{\text{closed strips}\}$

Given $\gamma \in \{\text{closed strips}\}$ Represent it as a path $\hat{\gamma} \colon \mathbb{S}^1 \to M$

$$\hat{\gamma} \colon \mathbb{S}^{\perp} \to M$$

$$\int r_{ij}$$
 $\hat{\gamma}$

$$\hat{\gamma} \colon \mathbb{S}^{\perp} \to M$$

Given $\gamma \in \{\text{closed strips}\}$ Represent it as a path $\hat{\gamma} \colon \mathbb{S}^1 \to M$

$\prod_{\hat{\gamma}} [r_{ij}] = \exp\left(2\pi \mathbf{i} - \mathbf{i} \int_{\hat{\gamma}} \kappa_g\right)$

$$\hat{\gamma} \colon \mathbb{S}^{\perp} \to M$$

$$\hat{\gamma} \colon \mathbb{S}^1 \to M$$

Given $\gamma \in \{\text{closed strips}\}$ Represent it as a path $\hat{\gamma} \colon \mathbb{S}^1 \to M$

 $\prod_{\hat{\gamma}} \tau_{ij} = (-1)^{\mathfrak{q}_{\tau}(\gamma)} \exp\left(\pi \mathbf{i} - \frac{\mathbf{i} \int_{\hat{\gamma}} \kappa_g}{2}\right)$

Given $\gamma \in \{\text{closed strips}\}$ Represent it as a path $\hat{\gamma} \colon \mathbb{S}^1 \to M$

 $\prod_{\hat{\gamma}} \tau_{ij} = (-1)^{\mathfrak{q}_{\tau}(\gamma)} \exp\left(\pi \mathbf{i} - \frac{\mathbf{i} \int_{\hat{\gamma}} \kappa_g}{2}\right)$ $\mathfrak{q}_{\tau} \colon \{\text{closed strips}\} \to \mathbb{Z}_2$

Spin Structure

Theorem q_{τ} : {closed strips} $\rightarrow \mathbb{Z}_2$ *is a quadratic form associated with* $[\cdot \cap \cdot]$.

Spin Structure

Theorem

 q_{τ} : {closed strips} $\rightarrow \mathbb{Z}_2$ is a quadratic form associated with $[\cdot \cap \cdot]$.

 $C_1(M, \partial M; \mathbb{Z}_2)$ acts (by switching the signs of τ) transitively on the space of such quadratic forms.

Spin Structure

$C_1(M, \partial M; \mathbb{Z}_2)$ acts (by switching the signs of τ) transitively on the space of such quadratic forms.

- Rotational connection r_{ij}

Microscopic scale

Setting up gauge field r_{ij} and a quadratic form q

Spin connection τ_{ij}

We can use the spin connection τ_{ij} to measure whether λ_i, λ_j have consistent chosen signs.

Theorem [C., Knöppel, Pinkall, Schröder 2018] Let $f: M \to \mathbb{R}^3$ be a non-degenerate triangular surface, $Q_i \in SO(3)$ be the rotation part of $(df)_i$ (polar decomposition), $\lambda_i \in SU(2)$ be any unit quaternion that "squares" to Q_i .

Theorem [C., Knöppel, Pinkall, Schröder 2018] Let $f: M \to \mathbb{R}^3$ be a non-degenerate triangular surface, $\lambda_i \in SU(2)$ be any unit quaternion that "squares" to Q_i . Across neighboring triangles, measure the signature

- $Q_i \in SO(3)$ be the rotation part of $(df)_i$ (polar decomposition),

 - $(-1)^{\mathfrak{s}_{ij}} := \operatorname{sgn}\langle\lambda_i,\lambda_i\circ\tau_{ij}\rangle_{\mathbb{R}^4}$

Theorem [C., Knöppel, Pinkall, Schröder 2018] Let $f: M \to \mathbb{R}^3$ be a non-degenerate triangular surface, $\lambda_i \in SU(2)$ be any unit quaternion that "squares" to Q_i . Across neighboring triangles, measure the signature

- $(-1)^{\mathfrak{s}_{ij}} := \operatorname{sgn}\langle\lambda_i,\lambda_i\circ\tau_{ij}\rangle_{\mathbb{R}^4}$
- Then the rimmed surface (f, \mathfrak{s}) has the desired figure-8/0 property $\mathfrak{q}_{\tau} = \mathfrak{q}_{(f,\mathfrak{s})}$

 $Q_i \in SO(3)$ be the rotation part of $(df)_i$ (polar decomposition),

$(-1)^{\mathfrak{s}_{ij}} := \operatorname{sgn}\langle\lambda_i,\lambda_i\circ\tau_{ij}\rangle_{\mathbb{R}^4}$

 $|\mathfrak{s}| \leq \frac{1}{2} \sum_{\text{all edges}} |\lambda_j - \lambda_i \circ \tau_{ij}|^2$

Microscopic scale

Spin connection τ_{ij}

minimize $\sum |\lambda_j - \lambda_i \circ \tau_{ij}|_{\epsilon}^2$ all edges

Microscopic scale

Spin connection τ_{ij}

Macroscopic scale

rotation field (frames)
rims

ld encodes

• figure-8/0

 $\left| \frac{2}{\epsilon} \right|_{\epsilon}^{2}$

Microscopic scale

Spin connection τ_{ij}

minimize $\sum |\lambda_j - \lambda_i \circ \tau_{ij}|_{\epsilon}^2$ all edges

Microscopic scale

Spin connection τ_{ij}

minimize $\sum |\lambda_j - \lambda_i \circ \tau_{ij}|_{\epsilon}^2$ all edges

Pinch point resolved

A Disk in Hyperbolic Plane

Hyperbolic disk

A Disk in Hyperbolic Plane

Hyperbolic disk

A Disk in Hyperbolic Plane

Circle Limit III — M.C. Escher

A Disk in Hyperbolic Plane

Flat Tori

Visualizing Ricci Flow

Metric modified by Ricci flow

Constant negative curvature surface

Random initial spinors

Constant negative gaussian curvature

Piecewise-smooth isometric immersions

Conjecture

representative.

Each regular homotopy class of immersions of a 2D Riemannian manifold into \mathbb{R}^3 contains a piecewise smooth isometric

Soccer ball

Soccer ball

Soccer ball

Aluminium can

Aluminium can

Aluminium can

Turning the sphere inside out

Film: *Turning a* Sphere Inside Out

N. Max 1977

A. Phillips 1966

B. Morin, G. Francis 1967 / 1987

Film: Outside In

W. Thurston,

- S. Levy,
- D. Maxwell,
- T. Munzner 1994

Optiverse

- J. Sullivan, G. Francis,
- S. Levy
- 1996

A. Chéritat 2014

Turn the bunny inside out isometrically

Thank You

Albert Chern TU Berlin / UCSD

Felix Knöppel TU Berlin Franz Pedit UMass Amherst Ulrich Pinkall TU Berlin Peter Schröder Caltech

"Shape from Metric"

"Finding Conformal and Isometric Immersions of Surfaces" arXiv: 1901.09432

• **VouTube** Shape from Metric • **O Houdini** implementations

ACM Trans. Graph. SIGGRAPH 2018